тест-обучение Обучающие тесты по математике

ЕНТ-2014, вариант 0015

По вашим просьбам!

4. Найти наибольшее целое решение неравенства:

0015-4

Умножим обе части неравенства на 15 — наименьший общий знаменатель данных дробей. Получаем равносильное неравенство:

3·(x-2)-5·(2x+3)>15. Раскрываем скобки: 3x-6-10x-15>15 и упрощаем:

3x-10x>15+6+15. Получаем -7x>36. Делим обе части неравенство на отрицательный коэффициент при х, поэтому знак неравенства меняем на противоположный:

x<-36/7. Выделим целую часть и покажем решения неравенства на числовой прямой.

0015-4-1

Наибольшее целое число из заштрихованного промежутка — это число -6.

5. Определите верное решение неравенства: log2(x-4)≤3.

Представим число 3 в виде логарифма с основанием 2.

log2(x-4)≤ log223 ; отсюда  log2(x-4)≤log28. Так как логарифмическая функция по основанию 2 является возрастающей на множестве всех положительных чисел, то последнее неравенство будет выполняться при условии, что х-4≤8, но в то же время: х-4>0. Из первого условия следует: х≤12, а из второго, что х>4. Общим будет значение х∈(4; 12].

7. Укажите функцию, график которой изображен на рисунке.

На рисунке мы видим параболу, которую можно задать уравнением вида: y=a(x-m)2+n, где (m; n) — координаты вершины параболы. На рисунке вершина параболы — точка (2; 1). Следовательно, m=2; n=1. А что по поводу значения коэффициента а? Смотрим на ответы: везде коэффициент перед скобкой равен единице. Ну и прекрасно — меньше забот! Получили формулу: y=(x-2)2+1.

11. Длина прямоугольного участка 120 м, а ширина составляет 75% длины. Вспахано 35% этого участка, тогда не вспахано:

По условию ширина составляет 75% от 120 метров — длины участка. Это 3/4 от длины, т.е. 120:4·3=90 метров. Площадь прямоугольного участка равна произведению длины участка на его ширину, значит, составляет 120 м·90 м= 10800 м2. Вспахано 35%, следовательно не вспахано 100%-35%=65%. Нам осталось найти 65% от 10800. Обращаем проценты в десятичную дробь: 65%=0,65 и умножаем эту дробь на 10800.

0,65·10800=7020. Отвечаем на вопрос задачи: не вспахано 7020 м2.

12. Решите уравнение:

0015-12

К правой части равенства применим основное логарифмическое тождество:

0015-12-1

Мы получили равные степени по основанию 2, следовательно, и показатели этих степеней будут равны. Получается квадратное уравнение: x2+x=2 или  x2+x-2=0. По теореме Виета подбираем корни: x1=-2; x2=1.

14. Решите уравнение: sin2x-cos2x=cos(x/2).

По формуле косинуса двойного угла: cos2α=cos2α-sin2α, тогда данное равенство преобразуется к виду:

-cos2х=cos(x/2) ⇒ -cos2х-cos(x/2)=0  ⇒ cos2х+cos(x/2)=0. Сумму косинусов преобразуем в произведение, используя формулу:

0015-14

17. Найдите сумму ординат точек экстремума функции f(x)=x3/(x2-3).

Вы, конечно, знаете, что экстремумы — это минимумы и максимумы функции, возможные только в критических точках. Классическое решение этого задания: 1) найти производную данной функции; 2) найти критические точки и отметить их на числовой прямой; 3) определить знаки производной на промежутках, определенных критическими точками; 4) выяснить, какие из критических точек являются точками минимума и какие точками максимума; 5) найти значения самой функции в этих точках минимума и максимума — это и будут ординаты точек экстремума; 6) сложить эти значения ординат. Но в этом конкретном задании все гораздо проще! Функция нам дана нечетная, т.е. для всех возможных значений х выполняется равенство: f(-x)=f(x). График нечетной функции симметричен относительно начала координат. Что это значит, и чем это нам поможет? Рассуждаем: если эта функция имеет максимум в точке с абсциссой а, то в симметричной ей точке с абсциссой (-а) она будет иметь минимум. Опять же значения функции в этих точках а и также будут являться противоположными числами. А чему равна сумма противоположных чисел? Правильно: нулю. Вывод: если вам нужно найти сумму ординат точек экстремума нечетной функции, то ответ: 0.

21. Найдите сумму корней уравнения: x-2-16x-1-80=0.

Сделаем замену: x-1=y. Получим уравнение: y2-16y-80=0. Находим корни: y1=-4 и y2=20.

Тогда  x-1=-4  или   x-1=20.

0015-21

22. Решить систему неравенств:

0015-22

В одной системе координат построим графики функций y=sinx, y=cosx и y= 1/6. Определим промежуток значений х, при которых график синуса лежит выше, а график косинуса ниже прямой y= 1/6.

0015-22-1

24. Найдите площадь параллелограмма ABCD, если А(5; 4), В(0; 3), С(4; 7), D(9; 8).

Площадь параллелограмма найдем по формуле: S=absinA, где a=АD и b=AB — стороны параллелограмма, А — угол между этими сторонами. Используем векторы: найдем координаты и модули векторов, выражающих стороны АD и AB параллелограмма, косинус угла между этими векторами. Затем найдем синус этого угла, и в формулу площади параллелограмма подставим все нужные значения.

0015-24

25. Электронные часы показывают время в часах и минутах (от 00:00 до 23:59). Сколько раз за сутки можно увидеть на табло 4 цифры 2, 0, 1, 9 (в любом порядке). Так как нет, например 91 минуты или 29 часов, то комбинаторика нам не поможет. Просто будем перечислять все возможные в реальности показания времени.

1) 01:29; 2) 02:19; 3) 09:12; 4) 09:21; 5) 10:29; 6) 12:09; 7) 19:02; 8) 19:20; 9) 20:19; 10) 21:09. Других значений из этих 4-х цифр быть не может.

Друзья, повторяйте формулы. Желаю успехов!

 

Навигация

Предыдущая статья: ←

Следующая статья:

Комментирование закрыто.

Архивы
Математика в видео.
Мой электронный адрес: at@mathematics-repetition.com Андрющенко Татьяна Яковлевна
skype-tutor
ЕНТ в картинках!
Instagram
ОГЭ-ЕГЭ в картинках!
Instagram
Наверх