тест-обучение Обучающие тесты по математике

ЕНТ-2014, вариант 0018

По вашим просьбам!

5. Найдите наибольшее целое решение неравенства 0,53x+2>8.

Представим левую и правую части неравенства в виде степени с основанием 2.

2-3x-2>23. Так как показательная функция с основанием 2  является возрастающей, то опуская основания степеней, знак неравенства сохраним. Получаем:

-3х-2>3  ⇒ -3x>3+2  ⇒ -3x>5 ⇒ x<-5:3.

0018-5

x=-2 есть наибольшее целое решение данного неравенства.

9. Отрезок АВ пересекает плоскость в точке М и делится ею пропорционально числам 8:5. Найдите длины АМ и МВ, если длина проекции отрезка на плоскость равна 52 см, а точка А отстоит от плоскости на расстоянии, равном 24 см.

0018-9

Итак, АМ:ВМ=8:5. Это означает, что отрезок АМ содержит 8 частей, а отрезок ВМ содержит 5 таких же частей. Проекция отрезка АВ на плоскость α есть сумма проекций отрезков АМ и МВ на эту плоскость, т.е отрезок B1A1=52 см по условию. Если мы проведем ВК параллельно B1Aдо пересечения с продолжением АA1, то очевидно, что ВК=B1A1=52 см. Так как точка А отстоит от плоскости на расстоянии 24 см, то длина отрезка АA1=24 см.

Пусть A1К=х. Из подобия треугольников АВК и АМA1 следует:

АК:АA1=АВ:АМ ⇒(24+х):24=(8+5):8 ⇒ (24+х):24=13:8. По основному свойству пропорций:

(24+х)·8=24·13. Разделим обе части равенства на 8. Получим:

24+х=3·13, отсюда х=39-24=15. Так как A1К=х=15 см, то АК=24 см+15 см=39 см. Из прямоугольного треугольника АВК по теореме Пифагора  AB2 =AK2+BK2. Подставляем значения АК=39 и ВК=52. Получаем:

AB2=392+522=(13∙3)2+(13∙4)2=132∙32+132∙42=132∙(32+42)=132∙(9+16)= 132∙25=132∙52. Отсюда АВ=13·5=65 (см). Так как на весь отрезок АВ приходится 13 частей (по условию АМ:МВ=8:5), то на одну часть приходится 65 см:13=5 см.

Тогда длина отрезка АМ=8·5 см=40 см, а длина отрезка МВ=5·5 см=25 см.

11. Даны 3 последовательных натуральных числа. Произведение этих чисел в 2 раза больше третьего числа. Найдите эти числа.

Если мы обозначим через х первое из трех натуральных последовательных чисел, то каждое следующее будет на 1 больше, т.е. второе число будет равно (х+1),

а третье (х+2). Зная, что произведение всех трех чисел в 2 раза больше третьего числа, составим уравнение:

х·(х+1)·(х+2)=2(х+2). Можно разделить обе части равенства на (х+2), так как это число (третье искомое число) точно не равно нулю. Получим равенство: х·(х+1)=2. Можно, конечно, раскрыть скобки и перенести все слагаемые в левую часть, а затем решить квадратное уравнение, но подумайте: произведение каких двух натуральных последовательных чисел равно двум? Ну, разумеется: 1 и 2.

Тогда искомые числа: 1, 2 и 3.

12. Решите уравнение:

0018-12

16. Производная функции:

0018-16

17. Составьте уравнение касательной к графику функции у=cos2x в точке xo= π/4.

Уравнение касательной к графику функции y=f(x) в точке с абсциссой xo имеет вид: y=f(xo)+f’(xo)∙(x-xo).  Находим f(xo)=f(π/4)=cos(π/2)=0. Находим производную данной функции: f ‘(x)= -2sin2x. Тогда f’(xo)=f’(π/4)=-2sin(π/2)=-2·1=-2. Полученные значения f(xo) и f’(xo) подставляем в уравнение касательной.

у=0-2·(х-π/4) ⇒ у=-2х+π/2.

23. Площадь правильного треугольника, лежащего в основании прямой призмы, равна

0018-23

0018-23-1

24. Даны векторы

0018-24

В последнее равенство подставим абсциссы всех данных векторов и получим первое уравнение системы: 7=-2х-4у или 2х+4у=-7. Теперь подставим соответствующие ординаты данных векторов и получим второе уравнение системы: 2=2х+у или 2х+у=2. Из 1-го уравнения 2х+4у=-7 вычтем 2-ое уравнение 2х+у=2. Получаем уравнение: 3у=-9, отсюда у=-3. Подставим значение у=-3 в уравнение 2х+у=2. Получаем 2х=5, отсюда х=2,5.

25. Эта задача была и в прошлом году. Смотрите здесь! Это тоже 25 задание.

 

Навигация

Предыдущая статья: ←

Следующая статья:

Комментирование закрыто.

Архивы
Математика в видео.
Мой электронный адрес: at@mathematics-repetition.com Андрющенко Татьяна Яковлевна
skype-tutor
ЕНТ в картинках!
Instagram
ОГЭ-ЕГЭ в картинках!
Instagram
Наверх