ЕНТ-2013, вариант 0003.
1. Число 45 пропорционально числам 4, 5 и 6. Если в задаче есть такие слова «пропорционально числам 4, 5 и 6″, то всегда обозначают одну часть через х. Тогда число 45=4х+5х+6х. Упрощаем: 15х=45, отсюда х=3. Меньшее число содержит 4х, значит, оно равно 4·3=12.
2. Требуется решить уравнение |4-x|=1,5. Идем от определения модуля числа: модуль неотрицательного числа равен самому этому числу, модуль отрицательного числа равен числу противоположному. Под знаком модуля могло быть как положительное число, так и отрицательное. Так и запишем:
4-х=1,5 или 4-х=-1,5;
-х=1,5-4; -х=-1,5-4.
-х=-2,2; -х=-5,5.
х=2,2; х=5,5.
3. Итак, автомобилист, выехавший из пункта А через полчаса после мотоциклиста, догнал его. Спрашивают, на каком расстоянии от А, если скорость мотоциклиста 48,4 км/ч, а скорость автомобиля больше скорости мотоцикла в
4. Отметим на числовой прямой «пустыми» точками -2 и 3. Решаем неравенство методом интервалов. Проверим знак дроби при х=10, подставив значение 10. Расставим знаки на промежутках. Так как у нас неравенство больше нуля, то выбираем промежуток знака «+».
5. Упростим данное выражение cos(30°+α)-cos(30°-α), используя формулу разности косинусов двух углов. Получим минус удвоенное произведение синуса полусуммы на синус полуразности: cos(30°+α)-cos(30°-α)=-2sin30°sinα=-sinα.
6. Нам дано однородное линейное уравнение. Решают его делением обеих частей равенства на косинус данного аргумента. В результате получают простейшее уравнение с тангенсом.
7. Известны девятый член (a9=12) и разность (d=1,5) арифметической прогрессии.
Требуется найти первый член a1 данной арифметической прогрессии. Применим формулу n-го члена арифметической прогрессии: an=a1+(n-1)d. Подставим в нее наши данные и получим: a9=a1+8d;
12=a1+8∙1,5;
12+a1=12 → a1=0.
8. Площадь фигуры, ограниченной данными линиями y=x2, y=0, x=2, найдем с помощью определенного интеграла. Искомая площадь будет равна определенному интегралу от нуля до двух функции икс в квадрате по дэ икс. Если вам это понятно — значит, вы представляете себе графики данных линий и так и должно быть! Если непонятно — строим графики и вспоминаем формулу площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x), а слева и справа — прямыми х=a, x=b.
9. По условию внешний угол при вершине А треугольника АВС в два раза больше одного из несмежных углов треугольника, а по определению, внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Получается, что эти несмежные углы равны между собой. Отсюда следует, что данный треугольник является равнобедренным с вершиной А. И если мы проведем медиану из вершины А, то она будет являться и высотой и биссектрисой.
10. Найдем корень данного уравнения и подставим его значение в выражение (-13х+2)2+х.
11. Дано уравнение (100x)lgx=x3. Требуется найти сумму его корней. Так как и основание и показатель степени содержат переменную, то решение уравнения начинаем с логарифмирования обеих частей равенства по основанию 10 (у нас ведь десятичный логарифм).
lg(100x)lgx=lgx3; логарифм степени равен произведению показателя этой степени на логарифм основания:
lgx∙lg(100x)=3lgx. Перенесем 3lgx в левую часть равенства и вынесем lgx за скобки: lgx∙lg(100x)-3lgx =0;
lgx∙(lg(100x)-3)=0. Каждый из множителей может быть равен нулю. Если lgx=0, то x=100=1. Если lg(100x)-3=0, то lg(100x)=3, откуда 100x=103; 100x=1000; x=10. Сумма квадратов корней: 12+102=1+100=101.
12. Упростим данную систему уравнений, освободившись от знака логарифма во 2-ом уравнении.
log5(2y+10x+3)=2 → 2y+10x+3=52 → 2y+10x+3=25; 10x+2y=22. Выразим 2х из первого уравнения: 2х=20-3у. Подставим это значение во 2-ое уравнение, имея ввиду, что 10х=5∙2х. Тогда вместо 10x+2y=22 запишем:
5∙(20-3у)+2у=22. Упростим: 100-15у+2у=22 или -13у=-78, откуда у=6. Подставляем это значение в выражение 2х=20-3у. Получаем:
2х=20-3∙6=2. Тогда х=1. Решением системы служит пара значений переменных: (1; 6).
13. Возведем обе части равенства в квадрат. Получаем: x-5=a2 → x=a2+5.
14. Область определения функции — это множество таких значений х, при которых выражение в правой части равенства имеет смысл. Так как у нас дробь, то знаменатель ее должен быть отличен от нуля, т.е. x+3x2≠0. Приравняем знаменатель к нулю, решим уравнение, а затем исключим корни этого уравнения.
15. Требуется найти производную сложной функции y=(lnx)2. Итак, мы имеем степень, значит, берем производную по формуле производной степени. Далее: основание этой степени — натуральный логарифм, — берем производную от натурального логарифма и умножаем производную степени на производную натурального логарифма.
16. Стороны треугольника ВА=14 см и ВС=17 см, а косинус угла В между ними равен (-8/17). Нужно найти площадь треугольника. Мы знаем формулу площади треугольника по двум сторонам и углу между ними: S=(1/2)ac·sinβ. Зная косинус угла В, вычислим синус этого угла, используя основное тригонометрическое тождество sin2β + cos2β=1, и подставим в формулу площади.
17. Дан равносторонний треугольник. Точка, равноудаленная от сторон треугольника на 5 см, от плоскости отстоит на 3 см. Нужно найти площадь этого треугольника.
18. Основания призмы — правильные треугольники со стороной 6 см. Требуется найти объем призмы, если ее боковое ребро равно Решение. Применяем формулу объема призмы: V=Sосн.∙H, где Sосн. – площадь основания призмы, значит, в нашей задаче, площадь правильного треугольника со стороной 6 см. H – высота призмы, а так как у нас призма прямая, то в качестве высоты можно взять длину бокового ребра.
19. Чтобы найти координаты точек пересечения окружности x2+y2-10x-6y+9=0 с осью абсцисс, подставим у=0, так как точки, лежащие на оси Ох имеют ординату, равную нулю, и решим получившееся квадратное уравнение х2-10х+9=0. Подбираем корни по теореме Виета: х1=1, х2=9. Искомые точки пересечения: (1; 0) и (9; 0).
20. Разложим числитель первой дроби по формуле разности кубов двух выражений a3-b3=(a-b)(a2+ab+b2). У нас а6-64=(а2)3-43=(а2-4)(а4+4а2+16). В знаменателе первой дроби такое же выражение, как во вторых скобках разложения. Сокращаем. Остается а2-4. Преобразуем вторую дробь. Числитель второй дроби разложим по формуле разности квадратов двух выражений а2-b2=(a-b)(a+b). У нас а4-16=(а2)2-42=(а2-4)(а2+4). Сократим вторую дробь на (а2+4), останется: а2-4. Имеем: а2-4+ а2-4=2а2-8.
21. Чтобы найти значение данного выражения, выразим а из предложенного равенства (из пропорции): 3(a+b)=2(a-2b). Раскрываем скобки: 3a+3b=2a-4b → a=-7b. Теперь подставим вместо а в данное выражение значение (-7b) и упростим.
22. Представим единицу в правой части неравенства в виде логарифма по основанию (2х+1). При потенцировании будем учитывать, что от значения основания логарифма (2х+1) будет зависеть, возрастает функция (если 2х+1>1) или убывает (если 0<2x+1<1). Если функция возрастает, то знак неравенства сохраним, если функция убывает, то знак неравенства поменяем на противоположный. Кроме этого, учтем, что под знаком логарифма могут быть только положительные числа.
23. Упростим предложенное неравенство: sinx+cos2x>1. Есть формула: 1-cos2α=2sin2α. Перепишем данное неравенство в виде:
sinx-(1-cos2x)>0. Применим формулу и получим: sinx-2sin2x>0. Сделаем замену переменной. Пусть sinx=y. Тогда: y-2y2>0 → y(1-2y)>0. Решим полученное неравенство методом интервалов.
24. Дана функция f(x)=6x2-4x+1. Известно, что F(x) является первообразной для f(x), причем, F(-1)=2. Требуется найти F(1). Для этого запишем F(x) для данной функции, найдем значение постоянной величины С, а затем искомое значение F(1).
Находим значение С, используя равенство: F(-1)=2.
2=2∙(-1)3-2∙(-1)2-1+С;
2=-2-2-1+C → C=7. Тогда первообразная F(x)=2x3-2x2+x+7. Подставим вместо х число 1 и получим: F(1)=2-2+1+7=8.
25. Пусть в актовом зале х скамеек. Если на каждую скамейку посадить по 5 учеников, то четверо останутся без места, значит, всего 5х+4 учащихся. Если на каждую скамью посадить по 6 детей, то 2 места останутся свободными. Получается 6х-2 учащихся. Но учащихся определенное количество — имеем равенство: 5х+4=6х-2. Отсюда х=6. Следовательно, в зале 6 скамеек, а учеников 5·6+4=34.
Комментирование закрыто.