ЕНТ-2013, вариант 0019.
Дорогие выпускники! Поздравляю вас с окончанием учебного года — последнего в вашей школьной жизни! Желаю вам успешной сдачи экзаменов и поступления в выбранный вами ВУЗ! Перед вами открыты все дороги, помните, что любая из них начинается с одного шага. Сделайте правильный шаг! Я желаю вам здоровья, счастья и удачи! Татьяна Яковлевна. Порешаем?!
1. Число х увеличили на 15%, получили 34,5. Отсюда следует, что х равно: Решаем. Было число х — это 100%, увеличили на 15%, стало 115% или 1,15х. Зная, что получили 34,5, составим уравнение:
1,15х=34,5. Делим обе части на 1,15 и получаем х=34,5:1,15=3450:115=30.
2. Решите уравнение: 14(2х-3)-5(х+4)=2(3х+5)+5х. Решаем. Раскрываем скобки:
28х-42-5х-20=6х+10+5х. Слагаемые с переменной х соберем в левой части равенства, а свободные члены — в правой:
28х-5х-6х-5х=10+42+20; приводим подобные слагаемые.
12х=72. Делим обе части на 12 и получаем х=6.
3. Решите неравенство: 4x-2x2-5≥0.
Преобразуем левую часть неравенства: -2x2+4x-5≥0. Умножим на (-1) и не забудем поменять знак неравенства на противоположный: 2x2-4x+5≤0. Рассмотрим функцию у=2x2-4x+5. Имеем a=2, b=-4, c=5. Графиком этой функции будет служить парабола с вершиной в точке O’(m; n), где m=-b/(2a)=4/4=1, n=y(m)=y(1)=2∙1-4∙1+5=2-4+5=3. Мы нашли координаты вершины параболы O’(1; 3). Ветви параболы будут направлены вверх, следовательно, парабола не пересечет ось Ох и при любом значении х точки параболы будут лежать выше оси Ох (уравнение оси Ох: у=0). Таким образом неравенство 2x2-4x+5≤0 не будет иметь решений.
4. Вычислить: cos80°·cos20°+sin80°·sin20°. Применим формулу косинуса разности двух углов. Тогда:
cos80°·cos20°+sin80°·sin20°=cos(80°-20°)=cos60°=1/2.
5. Найдите область значений функции у=3-5cosx. Всегда идут от основной функции. У нас это косинус х. Что мы знаем об области значений функции y=cosx, т. е о том, какие значения может принимать у?
Для функции синуса и косинуса область значений Е(у)=[-1; 1]. Запишем это в виде двойного неравенства:
-1≤cosx≤1. Теперь «оценим» значение -cosx.
-1≤-cosx≤1. Умножаем почленно на 5.
-5≤-5cosx≤5. Ко всем частям двойного неравенства прибавим число 3.
-5+3≤3-5cosx≤5+3. Получаем: -2≤3-5cosx≤8. Таким образом, область значений данной функции Е(y)=[-2; 8].
6. Вычислите интеграл:
7. Если центры вписанной и описанной около треугольника окружностей совпадают, то он: конечно, правильный (равносторонний), так как только у правильного многоугольника центры вписанной и описанной окружностей совпадают.
8. Радиус основания конуса равен 2 см. Осевым сечением является прямоугольный треугольник. Найдите площадь осевого сечения конуса.
Пусть нам дан конус с осевым сечением МАВ, угол АМВ — прямой. МО — высота конуса, радиус основания конуса ОА=ОВ=2 см. Площадь прямоугольного треугольника МАВ равна половине произведения основания АВ на высоту МО.
АВ=4 см, МО=ОА=2см (медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы).
9. В круг вписан квадрат ABCD, у которого известны вершины: B(9; 9) и D(-1; 3). Найдите центр окружности. Решаем. Центр вписанного (и описанного) в круг квадрата есть точка пересечения диагоналей квадрата, в этой точке диагонали делятся пополам. Найдем координаты точки О -центра круга и середины диагонали BD. О((9-1):2; (9+3):2) (координаты середины отрезка — это полусуммы соответственных координат концов отрезка). О(4; 6).
10. Решить уравнение:
11. Решаем. Отвечаем на вопрос задачи: на странице х строк и в каждой строке у букв. Получается, что всего на странице ху букв. Если количество строк и количество букв в строке увеличить на 2, то всего будет (х+2)(у+2) букв. Зная, что в этом случае число букв увеличится на 150, составим первое уравнение системы: 1) (х+2)(у+2)-ху=150. Если же убавить число букв в строке на 3, а число строк на странице на 5, то на странице будет (х-5)(у-3) букв. Зная, что число всех букв в этом случае уменьшится на 280, составим второе уравнение системы: 2) ху-(х-5)(у-3)=280. Упростим каждое из уравнений системы.
1) (х+2)(у+2)-ху=150. Раскроем скобки: ху+2у+2х+4-ху=150, отсюда 2х+2у=146, разделим почленно на 2 и получим:
х+у=73. Можно здесь и остановиться. Смотрите ответы: х-это количество строк, у-количество букв в строке. В каждом из предложенных ответов по два числа, и только ответ С) 35 строк; 38 букв удовлетворяет последнему равенству х+у=73. А если решать дальше, то что будем делать? Упрощаем уравнение 2) ху-(х-5)(у-3)=280. Получаем ху-ху+3х+5у-15=280, отсюда 3х+5у=295. Из 1) уравнения выразим у=73-х и подставим в уравнение 3х+5у=295. Получим:
3х+5(73-х)=295. Тогда зх+365-5х=295 или -2х=-70, отсюда х=35.
у=73-35=38. Ответ: 35 строк и 38 букв.
12. Решить систему уравнений:
Ну, а если дальше решать, то выражайте х через у, получается х=2+у и подставляйте во второе уравнение. Получится:
22+y-2y=3 ⇒ 22∙2y-2y=3 ⇒ 2y(4-1)=3 ⇒ 2y=1, отсюда y=0. Находим x=2+0=2. Ответ: (2; 0).
13. Решить уравнение:
14. Требуется решить иррациональное уравнение. Возведем обе части равенства в квадрат. Получим:
x-2=64-16x+x2, после упрощения: x2-17x+66=0. Это приведенное квадратное уравнение. По теореме Виета x1=6, x2=11. Анализируем ответы. Значение х=11 не подойдет, так как правая часть данного уравнения становится отрицательной, а арифметический квадратный корень не может выражаться отрицательным числом. Ответ: 6.
15. Решите уравнение: cos2x=cosx-1. Найдите сумму его корней, принадлежащих промежутку [0; 2π]. Решаем. Запишем данное неравенство в виде: 1+cos2x-cosx=0 и применим формулу: 1+cos2α=2cos2α. Тогда получим:
2cos2x-cosx=0; вынесем общий множитель за скобки:
cosx(2cosx-1)=0, отсюда или cosx=0 или 2cosx-1=0. Решим каждое из этих уравнений.
16. В каких точках касательная к графику функции y=f(x) образует с осю Ох угол 45°, если
17. Найдите первообразную для функции f(x)=cos2x. Преобразуем данную функцию, понизив ее порядок по формуле: 1+cos2α=2cos2α.
18. Стороны прямоугольника пропорциональны числам 3 и 4, а его площадь равна 192 см2. Найдите площадь круга, описанного около прямоугольника. Решаем.
Диаметром круга будет служить диагональ АС прямоугольника ABCD, соответственно, радиус круга ОА равен половине АС. Обозначим одну часть через х. Тогда стороны прямоугольника равны 3х и 4х. Зная, что площадь прямоугольника вычисляется по формуле: S=ab (a и b — стороны прямоугольника) и равна 192 см2, составим уравнение: 3х·4х=192, тогда 12x2=192, делим на 12, получаем x2=16, отсюда x=4. Итак, одна часть равна 4 см, тогда стороны прямоугольника 3·4=12 см и 4·4=16 см. Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора AC2=AB2+BC2=122+162=144+256=400, отсюда АС=20 см. (Можно было найти короче и устно: 3, 4 и 5 — пифагорова «тройка» чисел, получается, что на гипотенузу приходится 5 частей, одна часть равна 4 см, значит, гипотенуза составляет 5·4=20 см.). АС=20 см, поэтому, радиус круга ОА=10 см, и площадь круга S=πR2=π∙102=100π (см2).
19. В правильной четырехугольной пирамиде длина бокового ребра равна 25 см, а площадь основания 800 см2. Найдите высоту пирамиды.
Решение сводится к нахождению катета МО прямоугольного треугольника МОС. Гипотенуза МС = 25 см, ОС- половина диагонали AC квадрата ABCD. Нам дана площадь квадрата, которую можно подставить в формулу S=(1/2)d2, где d — диагональ квадрата. Получаем равенство: 800=(1/2)d2, умножаем обе части на 2 и получаем: d2=1600, отсюда диагональ АС=d=40 см. ОС=20 см. Из прямоугольного треугольника МОС по теореме Пифагора следует: MO2=MC2-OC2; MO2=252-202=625-400=225, тогда MO=15 см.
20. Найдите значение выражения:
21. Упростите выражение:
22. Решить неравенство:
23. Решить неравенство:
24. Знаменатель геометрической прогрессии 1/3, четвертый член 1/54, а сумма всех членов 121/162. Найти число членов прогрессии. Решаем.
25. Имеется монета. Сколько нужно таких монет, чтобы их можно было расположить вокруг данной монеты так, чтобы все они касались данной монеты и попарно друг друга?
Не мудрствуя лукаво, возьмем монетки одного достоинства (например, по 5 тенге) и расположим их, как сказано в условии. Их будет 6. Монетки — не калькулятор и не сотовый телефон — можно взять с собой на экзамен!
Комментирование закрыто.